

NBG-003-006202 Seat No. _____

B. Sc. (Bioinformatics) (Sem. II) (CBCS) Examination April / May - 2017

BI-202: Mathematics & Statistics - II

Faculty Code: 003 Subject Code: 006202

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

- 1 Answer the following in short:
 - (1) $f(x) = x^2 2x + 5$ is decreasing for x <______
 - (2) The mean value for the function $f(x) = x^2 2x + 3$ in (0,2) using Rolle's Theorem is _____
 - (3) For $f = x^2y^3 + x^3y^2$, $\frac{\partial^2 f}{\partial x \partial y} = \underline{\hspace{1cm}}$
 - (4) The slope of the line 2x+3y=6 is _____
 - (5) The distance between the points (-2,4) and (-2,-1) is
 - (6) The mean value for the function $x^3 + x$ in (1,2) using Lagrange's theorem is _____
 - (7) If $\overline{a} \cdot \overline{b} = 0$ then the angle between the vectors \overline{a} and \overline{b} is _____
 - (8) Area of the triangle formed by (4,1), (5,1) and the origin is
 - (9) The value of y-intercept of the line passes through the origin is _____
 - $(10) \int x^2 + 2^x \, dx = \underline{\qquad} + c$
 - $(11) \int \frac{x}{a} + \frac{a}{x} dx = \underline{\qquad} +c$
 - (12) $\int 3x^4 \frac{2}{x^2} dx = \underline{\qquad} +c$
 - $(13) \int \frac{1}{5x+2} \, dx = \underline{\qquad} +c$
 - (14) The range of Co-efficient of correlation is _____
 - (15) There is _____ correlation between rainfall and level of ground water.

20

(16)	Co-efficient	of	correlation	is	 mean	\mathbf{for}
	Regression o	oeff	icients.			

- (17) In usual notations $P(A-B) = \underline{\hspace{1cm}}$
- (18) If A' and B' are independent events then $P(A' \cap B') =$
- (19) For a probability distribution $\sum P(x_i) = \underline{\hspace{1cm}}$
- (20) If for a binomial distribution mean = 8 and Variance = 4 then the value of p = _____
- 2 (A) Answer any three:

 $2\times3=6$

(1) Find
$$\int 5x^2 + \frac{3}{x} + 2^x dx$$

(2) Find
$$\int_{2}^{3} x^3 + 3x - 1 dx$$

- (3) For $\overline{x} = (2,3,0), \overline{y} = (1,1,1) \& \overline{z} = (2,1,2) \text{ find } [\overline{x} \overline{y} \overline{z}]$
- (4) Verify whether the points (1,3), (1,4), (1,-3) are collinear or not
- (5) For $f(x, y) = 2x^2y + xy^2 + 3xy$ find $f_x, f_y & f_{yx}$
- (6) Find the interval/s where the function $f(x) = x^3 3x^2 45x$ is decreasing.
- (B) Answer any three:

 $3\times3=9$

(1) Find
$$\int \frac{2x+5}{\sqrt{x^2+5x+2}} dx$$

(2) Find
$$\int_{1}^{2} \frac{x+5}{x+4} dx$$

- (3) Verify Lagrange's Mean Value Theorem for f(x) = (x-1)(x-2)(x-3) where $x \in [0,4]$
- (4) If $\overline{x} = (2,1,3)$, $\overline{y} = (1,2,4) \& \overline{z} = (1,8,2)$ Prove: $\overline{x} \cdot (\overline{y} + \overline{z}) = \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z}$
- (5) Find the area of triangle having vertices (1,4), (2,3) and (3,0)
- (6) Find the coordinates of the point which divides the join of the points A(1,-2) & B(4,7) externally in the ratio 2:3

(C) Answer any two:

 $2 \times 5 = 10$

- (1) Find $\int_{2}^{3} \frac{2x+5}{x^2+5x} dx$
- (2) Show that the line joining A (2,1) and B (3,4) is perpendicular to the line joining C(7,5) and D(4,6)
- (3) For $f(x,y) = 3x^2 + 4xy + 3y^2$ prove that $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2f(x,y)$
- (4) Prove that the points A (2,2), B(2,4), C(4,4) and D(4,2) are vertices of a square
- (5) Find maximum and minimum values for the function $f(x) = 4x^3 + 19x^2 14x + 3$
- 3 (A) Answer any three:

 $2\times3=6$

- (1) For a bivariate sample r = 0.8 and P.E. = 0.08 then find n
- (2) Explain types of correlation
- (3) If E(x)=3 then find the value of E(4x-5)
- (4) If r = 0.9, $S_y = 9$, $S_x = 4.5$ then find the values of b_{yx} and b_{xy}
- (5) If $\overline{a} = 4\hat{i} + 6\hat{j}$ and $\overline{b} = 3\hat{i} + 4\hat{j}$ then find $(3\overline{a} 5\overline{b}) \cdot (2\overline{a} + 7\overline{b})$
- (6) If $P(A_1) = 0.4$, $P(A_2) = 0.2$ & $P(A_1/A_2) = 0.4$ then find the probability that only A_2 happens.
- (B) Answer any three:

 $3\times3=9$

- (1) There are two defective pencils in a pack of dozen pencils, If three pencils are taken at Random, find the probabilities that (1) At the most one pencil is defective (2) Two Pencils are defective.
- (2) If A, B and C are mutually exclusive and exhaustive events and if 3P(A) = 2P(B) = 6P(C) Then find $P(A \cup B)$.

(3) The probability distribution of demand of a commodity is given below:

Demand(x)	5	6	7	8	9	10
Prob.P(x)	0.05	0.1	0.3	0.4	0.1	0.05

Find the expected demand and its variance.

- (4) If $\overline{a} = 4\hat{i} + 2\hat{j} \hat{k}$ and $\overline{a} = 5\hat{i} + 2\hat{j} 3\hat{k}$ then find the angle between the vectors $\overline{a} + \overline{b}$ and $\overline{a} \overline{b}$
- (5) The sum of the squares of rank differences of two variables x and y is 126 and the Correlation coefficient is -0.5. Find the number of pairs.
- (6) The regression equations of two variables are 5y = 9x 22 and 20x = 9y + 350 then find means of x and y and also find the value of r.
- (C) Answer any two:

 $2 \times 5 = 10$

(1) Find the regression coefficients from the following data:

- 1										29	
I	у	17	19	19	20	23	24	27	26	28	27

(2) Find the coefficient of rank correlation

x	28	27	26	35	39	42	39	37	32	22
у	40	42	38	49	40	50	38	44	45	36

- (3) If $\overline{a} = 2\hat{i} + 5\hat{j} 7\hat{k}$, $\overline{b} = -3\hat{i} + 4\hat{j} + \hat{k}$ and $\overline{c} = \hat{i} 2\hat{j} 3\hat{k}$ then show that $(\overline{a} \times \overline{b}) \times \overline{c}$ and $\overline{a} \times (\overline{b} \times \overline{c})$ are not the same.
- (4) The probability distribution of a random variable x is as follows:

x	0	1	2	3	4	5	6	7
P(x)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

- (1) Find the value of k
- (2) Obtain the probability distribution of x.
- (5) There are 6 red and 3 black balls in one bag; 5 red and 6 black balls in another bag. A bag is selected at random and two balls are drawn from it. Find the probability that one is red ball and one is black ball.